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Online content-sharing platforms such as TikTok and Facebook have become integral to daily life, leverag-

ing complex algorithms to recommend user-generated content (UGC) to other users. While prior research

and industry efforts have primarily focused on designing recommender systems to enhance users’ content

consumption, the impact of recommender systems on content production remains understudied. To address

this gap, we conducted a randomized field experiment on one of the world’s largest video-sharing platforms.

We manipulated the algorithm’s recommendation of creators based on their popularity, excluding a subset

of highly popular creators’ content from being recommended to the treatment group. Our experimental re-

sults indicate that recommending content from less popular creators led to a significant 1.34% decrease in

video-watching time but a significant 2.71% increase in the number of videos uploaded by treated users. This

highlights a critical trade-off in designing recommender systems: popular creator recommendations boost

consumption but reduce production. To optimize recommendations, we developed a structural model wherein

users’ choices between content consumption and production are inversely affected by recommended creators’

popularity. Counterfactual analyses based on our structural estimation reveal that the optimal strategy often

involves recommending less popular content to enhance production, challenging current industry practices.

Thus, a balanced approach in designing recommender systems is essential to simultaneously foster content

consumption and production.
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1. Introduction

Online content-sharing platforms like Facebook, YouTube, and TikTok are increasingly pivotal in

society.1 As of February 2024, Meta Inc., Facebook’s parent company, connects over 3 billion people

worldwide, or about 38% of the global population, through various social products, with many

users spending hours each day on these products.2 These platforms have drastically changed how

we express ourselves, learn, and connect with people everywhere (Luca 2015, Baym 2021). They’re

1 https://www.pewresearch.org/internet/fact-sheet/social-media/

2 https://investor.fb.com/home/default.aspx
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not just for personal use; they also play a crucial role in how businesses and brands interact with

their customers (Chatterjee and Zhou 2021, Zhang and Luo 2023), underscoring the significant

impact these digital spaces have for the global economy.

These platforms, unlike traditional media, have two distinct features. First, most of the content

consumed is generated by users themselves, known as user-generated content (UGC). This makes

these platforms function as two-sided markets, where users can simultaneously be both content

consumers and content creators (also known as content producers). Second, these platforms handle

the daily upload of hundreds of millions of content pieces, while each user can only consume up to

hundreds of content pieces daily. This means they need to use algorithmic recommender systems to

pick a limited number of content pieces to show to each user. For example, on YouTube, the largest

video-sharing platform, around 3.7 million new videos are uploaded daily in 2024.3 YouTube used

a sophisticated recommender system to determine which videos to display to each user, and 70%

of the platform’s video watch time was attributed to recommended videos.4

Therefore, recommender systems are crucial for sorting through vast amounts of content to tai-

lor user experiences and significantly influence user behavior on these platforms. They serve as a

critical tool for these platforms and are the subject of extensive research (Davidson et al. 2010,

Wang et al. 2019). Both industry and academic research have focused on refining recommender

systems to enhance user engagement and content consumption (Davidson et al. 2010, Wang et al.

2019). For example, YouTube has significantly improved its recommender system’s machine learn-

ing architecture to increase the duration users spend watching content (Davidson et al. 2010). In

academia, extensive research has been dedicated to enhancing user engagement and consumption

behavior by optimizing various metrics, including click-through rates (Liu et al. 2010, Wang et al.

2019, Rafieian 2023), watch time (Covington et al. 2016, Zheng et al. 2022), dwell time (Zou et al.

2019), and visiting frequency (Xue et al. 2023). To achieve these goals, recommender systems

primarily promote content that is popular and high-quality while also accommodating individual

preferences when interacting with each user. This pattern of prioritizing highly popular content is

also evident on the platform we collaborated with, a large online video-sharing platform referred

to as “Platform V.” We provide detailed evidence of this pattern in Online Appendix A.

While understanding the influence of recommender systems on users’ content engagement and

consumption is crucial, examining their impact on content creation is equally, if not more, important

for two main reasons.5 First, content production is vital for the long-term prosperity of a platform.

Sustainable growth requires sufficient content production, as platforms rely on users to generate

3 https://www.wyzowl.com/youtube-stats/

4 https://blog.hootsuite.com/how-the-youtube-algorithm-works/

5 Throughout the paper, we will use the terms content production and content creation interchangeably.
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new content for others to consume (Zhang et al. 2012). Moreover, content production and sharing

can help users develop friendships and foster a sense of community and social belonging (Daugherty

et al. 2008, Pedroni et al. 2014), which are important for their long-term retention on the platform.

Second and more importantly, recommending highly popular content, while helpful for content

consumption, could potentially backfire on content production. Recommending highly popular

creators can lead users to believe that the content-sharing marketplace is highly competitive, which

may discourage them from producing content.

Overall, the impact of recommender systems on content creation is an important yet understudied

question. This impact can lead to a notable trade-off between content consumption and creation

when designing recommender systems. This naturally leads to our main research questions. First,

how does recommending popular (or less popular) content creators simultaneously change users’

content consumption and creation? Second, and more importantly, if the recommender system

simultaneously impacts content consumption and creation, how can we design an optimal level of

recommended popularity to balance users’ content consumption and creation?

To study the impact of recommender systems on both user content consumption and produc-

tion, we conducted a randomized field experiment with Platform V from January 8 to January

15, 2021. Platform V was using cutting-edge deep-learning-based recommender systems to recom-

mend personalized content to each user (similar to the one used by YouTube (Covington et al.

2016)), and it primarily uses a creator’s number of followers to measure that creator’ popularity.

In this experiment, we selected a small subset of highly popular creators (less than 0.05% of all

creators), referred to as “Blocked Creators,” based on creators’ data prior to the experiment. We

then randomly assigned 10% of Platform V’s users to a treatment group and another 10% to a

control group. While users in both the treatment and control groups were served by the same

unchanged cutting-edge recommender system, the system did not include blocked creators’ con-

tent when recommending to treated users. The goal of this treatment was to lower the average

popularity of recommended creators for the treatment users compared to the control users. We

observed a 25.64% reduction in the average popularity of recommended creators in the treatment

group compared to the control group, confirming the efficacy of our intervention. Moreover, we

conducted extensive randomization checks to ensure that the treatment group was comparable to

the control group, indicating that the reduction in the average popularity of recommended creators

was due to our intervention.

Our large-scale randomized field experiment on Platform V provided key insights into the im-

pact of recommender systems on users’ content consumption and production. Treated users, who

received recommendations with a reduced average popularity of creators, significantly decreased

their content consumption, measured by total time spent watching videos, by 1.34% compared to
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control users (p<0.0001). Interestingly, in contrast, treated users significantly increased their con-

tent production, measured by the daily number of videos uploaded, by 2.71% (p<0.001). While our

intervention of recommending less popular creators increased treated users’ content production, it

did not affect their own popularity or the subsequent engagement levels of their uploaded videos.

The findings from our experiment highlight a critical trade-off between video consumption and

production, prompting us to answer our second main research question—how recommender sys-

tems can be designed to maximize platform benefits considering both aspects. To achieve this, we

developed a structural model that allows users to allocate their time between watching and creating

videos, linking their marginal utility for content consumption and production to the popularity of

recommended creators and their own popularity. Specifically, in our model, users’ consumption is

affected by the popularity of recommended creators, highlighting the effect of recommendations

on user consumption. Additionally, the model allows a user’s incentive to create videos to be in-

fluenced by the relative popularity of recommended creators and the focal user, emphasizing the

effect of recommendations on user creation. Recognizing the diversity in user preferences over time,

our structural model also categorizes users into multiple latent types and includes time-dependent

random effects. This model is estimated through simulated maximum likelihood estimation with

the Geweke-Hajivassiliou-Keane (GHK) sampling method (Geweke et al. 1994, Hajivassiliou and

Ruud 1994, Keane 1994) to decompose the time-dependent random effects, using data from all

eight days of our experimental period.

The estimation results from our structural model suggest that users’ marginal utilities of con-

sumption are positively impacted by the popularity of recommended creators, while their marginal

utilities of creation are negatively impacted by the ratio of the popularity of recommended creators

to their own popularity as creators. This is consistent with our field experiment results. In fact,

using our structural model to simulate the treatment effect in this experiment yields both quali-

tatively and quantitatively similar results, increasing confidence in our model’s ability to capture

users’ reactions to recommendation changes. Utilizing the model estimation, we conducted various

counterfactual analyses by changing the average popularity of recommended creators to maximize

the combined value of content consumption and production from users. Our counterfactual analysis

indicates that, contrary to the industry practice, simply recommending the most popular creators

may not always yield the best outcomes for the platform. For several user segments, it is often

optimal to recommend relatively less popular creators so that the benefits from increased content

production outweigh the costs of decreased content consumption. This demonstrates that by tai-

loring recommendations to trade off content consumption with content production, the platform

can further increase overall value.
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In summary, our study addresses a critical yet overlooked question in both academic and indus-

try contexts—the impact of recommender systems on content creation. Our study makes several

important contributions to both academic research and industry practice regarding recommender

systems on content-sharing platforms. First, to the best of our knowledge, we are the first to pro-

vide rigorous and causal evidence on how content creators’ popularity can simultaneously affect

users’ consumption and production in a real-world setting with cutting-edge recommender sys-

tems. We are also the first to document this important trade-off between content consumption and

production through recommender systems. Second, we developed a new structural model that can

accurately capture how recommender systems influence content consumption and production si-

multaneously. Third, our model and corresponding counterfactual analyses can be easily replicated

on other content-sharing platforms, allowing them to adjust their recommendation strategies to

increase the combined value of content consumption and production.

The rest of the paper proceeds as follows. Section 2 reviews the relevant literature. Section 3

introduces our field setting, experimental design, data, and randomization checks. Section 4 docu-

ments the main empirical findings from our field experiment. Section 5 describes the formulation

and estimation methods of our structural model. Sections 6 illustrates the estimation results of our

model and counterfactual analyses. In Section 7, we conclude by discussing practical implications

of our research and directions for future research.

2. Literature Review

Our work relates primarily to three main streams of research: recommender systems, network

effects, and platform operations,

Recommender systems. Recommender systems have become a pivotal area of research, with

studies primarily aimed at enhancing user engagement and consumption behaviors. These efforts

strive to optimize various metrics, including click-through rates (Liu et al. 2010, Wang et al. 2019,

Rafieian 2023), watch time (Covington et al. 2016, Zheng et al. 2022), dwell time (Zou et al. 2019)

and visiting frequency (Xue et al. 2023). Although these efforts have significantly enhanced user

engagement and consumption, the impact of recommender systems on user content production

remains underexplored, despite its critical importance for the long-term development of online

content-sharing platforms.

To contribute to this question, we conducted a large-scale randomized field experiment on Plat-

form V to investigate the impact of recommender systems on both content consumption and pro-

duction. This study is pioneering in its focus and methods. To our best knowledge, this is the first

to causally examine the dual impact of recommender systems through a large-scale randomized

filed experiment. Our findings revealed a significant trade-off between content consumption and
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production, prompting us to develop a novel structural model that provides new methods and

insights on how platforms can design recommendation algorithms to enhance overall value from

both content consumption and production. Our work not only broadens the understanding of rec-

ommender systems multifaceted impact but also offers actionable guidance for platforms seeking

to optimize these algorithms for comprehensive platform benefits.

Network Effects. Our study speaks to the body of literature on network effects (Eisenmann

et al. 2006), a field that investigates the impact of networks on user behavior on both one-sided and

two-sided markets. This research has explored the “same-side network effect,” where the behavior

of users on one side influences the-same-category behavior of the users in the same side. For

instance, studies have shown that in the video game market (Shankar and Bayus 2003) and the

telecommunications industry (Hu et al. 2019), consumers’ consumption behavior is influenced by

the consumption patterns of other consumers. Similarly, user choices on online dating platforms

have been found to be affected by the selections of the users in the same side (Fong 2024). In

addition to the same-side network effect, the literature also delves into the “cross-side network

effect” within two-sided markets, examining how the presence of users on one side influences the

utility of users on the opposite side. Examples include the dynamics between buyer size and seller

size on e-commerce platforms (Chu and Manchanda 2016) and the interactions between two user

groups to be matched on online dating services (Fong 2024, Halaburda et al. 2018).

Our research introduces a novel perspective to the discussion of network effects by recognizing

that users on two-sided platforms often perform dual roles, engaging both in content production

and consumption. Our research reveals that a user’s production and consumption activities can

be significantly influenced by the production behaviors of their peers. Notably, the phenomenon

where a user’s consumption is influenced by the production activities of same-side users introduces

a new aspect to network effects, which we term “the cross-side effect within the same group.” This

insight extends the traditional understanding of network effects, providing a more nuanced view

of user interactions and their impacts on platform dynamics.

Platform operations. Our research also intersects with the growing field focused on operational

challenges within online platforms. This domain has explored strategies for enhancing platform

performance through various levers such as pricing (Bimpikis et al. 2019, Zhang et al. 2020),

advertising (Mookerjee et al. 2017), recommending or matching (Banerjee et al. 2016), and the

stimulation of supply provision (Cabral and Li 2015, Burtch et al. 2018). Our study introduces

a fresh perspective on the matching strategies of online platforms. Unlike previous studies, which

predominantly aim to enhance consumption behaviors by matching, our analysis highlights the

importance of valuing both supply provision and consumption in the design of matching strategies.
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Specifically, our contribution aligns closely with literature examining content consumption and

production on online content-sharing platforms. Past research has largely focused on one of two

areas: enhancing content consumption through recommendation optimization (Wang et al. 2012),

or incentivizing content production through financial rewards (Cabral and Li 2015, Burtch et al.

2018) or exploring psychological motivations (Wang et al. 2012, Zeng et al. 2022). However, there

has been limited investigation on both content consumption and production simultaneously. A few

studies have noted the negative correlation between content consumption and production using

observational data (Ghose and Han 2011, Huang et al. 2015), yet a comprehensive understanding

of these dual aspects remains underexplored. Our work contributes to this question by providing

new insights into the intricate balance between encouraging content production and consumption

on online content-sharing platforms, thereby optimizing overall platform value.

3. Setting, Experiment, Data and Randomization Checks
3.1. Empirical Setting

To conduct a randomized field experiment, we collaborated with Platform V, a large-scale video-

sharing social network platform. As of 2023, the average number of active users per day on Platform

V is more than 380 million. The users on Platform V can create and upload their own videos as

content creators, and also watch videos created by other users as content viewers, or consumers.

Similar to Facebook and Instagram, Platform V neither pays users for creating and uploading

videos nor charges users for viewing videos. Instead, Platform V’s revenue primarily comes from

advertising. Videos on Platform V are typically a few seconds to a few minutes long, covering

popular topics such as film and series re-edits, beauty, gaming, and daily life.

When a user opens the mobile application of Platform V, they are immediately shown a video

covering almost the entire mobile phone screen, referred to as the “viewing page” (see Figure 1 (a)).

The video starts playing automatically without requiring any clicks. If the user is not interested in

the video, they can scroll up to view the next one. Consequently, a video being recommended is

equivalent to a video being watched, at least being watched for a few seconds. If the user is interested

in the video, they can continue watching it. While watching, users have several interaction options:

clicking the “like” button to upvote the video, the “comment” button to leave comments, and the

“share” button to share the video with others. Platform V utilizes a cutting-edge personalized

recommender system to select a subset of videos that match the user’s preferences from the supply

pool of vast videos available on the platform.

At the bottom of the viewing page, there is a button that directs users to the “uploading page”

(see Figure 1 (b)), where they can create and upload videos. On the uploading page, users play the

role of creators in this two-sided network. To create a video, users have two options: they can either
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(a) The Viewing Page (b) The Uploading Page

Figure 1 How Users Watch and Create Videos on Platform V6

film a video live by clicking the “filming” button located at the center bottom of the screen or

select existing videos or photos from their phone’s memory by clicking the “photo album” button

in the bottom right corner.

3.2. Experimental Design

We conducted a randomized field experiment from January 8 to January 15, 2021, on Platform V,

targeting 20% of their users. Participants were evenly and randomly divided into treatment and

control groups. Platform V defined highly popular creators as those with a number of followers

exceeding a specific threshold.7 These highly popular creators comprised roughly 0.3% of all creators

on the platform. Before initiating the experiment, platform managers identified a random 15% of

these highly popular creators as “blocked creators,” an important concept for defining the treatment

in the experiment.

Upon each user login, regardless of group assignment, Platform V used the same recommender

system to generate a personalized list of videos that would be recommended to the user. This list

was selected mainly based on the creators’ popularity on the platform and alignment with individual

user preferences. This personalization recommender system is cutting-edge and commonly used

in the industry (refer to Chen et al. (2024) for a detailed illustration of such a system). For

users in the treatment group, videos from Blocked Creators were excluded from their personalized

6 In order to protect the sensitive information of Platform V, we used a typical interface of short-video-sharing
platforms and did some minor modification on the elements that can potentially identify Platform V.

7 The exact threshold and details about the Blocked Creators remain confidential due to the non-disclosure agreement.
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Figure 2 Illustration of Our Randomized Field Experiment9

recommendation list before being displayed, while users in the control group did not have such

exclusions and followed the original recommender system. This manipulation aimed to reduce the

average popularity levels of the creators recommended to treatment users, since the videos from

these highly popular blocked users could be replaced by videos from less popular creators for

treated users. This design of our experiment is detailed in Figure 2. We want to note that, while the

treatment could potentially decrease the overall popularity of creators recommended to treatment

users, the recommendation still remains highly personalized across each user. In other words, this

treatment aimed to induce vertical differentiation of recommendations between the treatment and

control groups while still maintaining the horizontal differentiation of recommendations across

users facilitated by the original recommender system.8

3.3. Data and Variables

Due to data confidentiality reasons with Platform V, we did not have access to all users’ data from

the experiment. Instead, we were able to to gather a random sample of 100,000 active users, 50,118

users in the treatment group and 49,882 in the control group. A user was active in our setting if

she had both uploaded at least one video and watched at least one video during the 30 days prior

to the start of our experiment. This selection criterion was highly representative of Platform V, as

users meeting these conditions accounted for roughly 90% of the video supply (in terms of number

8 It may be theoretically easier to manipulate video popularity rather than creator popularity in such an experi-
ment. However, the number of videos is often too vast to be effectively targeted by manipulations in a real-world
recommender system, which is why we focus on creator-level treatments.

9 In this example where the highest-ranked video in a user’s recommendation feed was created by Blocked Creators, it
was removed from the recommendations. Videos from Blocked Creators could appear at various ranks, except the first
rank. In addition, in other instances, users’ potential recommendation pools might not include videos from Blocked
Creators.



Zeng et. al.: The Impact of Recommender Systems on Content Consumption and Production
10

Table 1 Name and Description for Variables

Variable Description

Creator Popularityi Median number of followers for user i over the week before the experiment.
Popularity of Recommendationsit Median Creator Popularity across all videos watched by user i on day t.
Video Watch Timeit Time spent by user i watching videos on day t.
Number of Videos Uploadedit Number of videos user i uploaded on day t.
Engagement per Video Uploadedit Engagement (views, likes, shares) per video uploaded by user i on day t.

Notes: Creator Popularityi is user level measurement, and all other three variables are user-day level measurements.

of videos) and 30% of the video demand (in terms of watching time). For each user in our sample,

we collected their demographic information including gender and age, and tracked their decisions

on watching and creating videos over the experiment period. We organized our data mainly on

a daily basis, consistent with Platform V’s data norms. Users and days are indexed by i and t

respectively.

In Table 1, we outlined the primary variables in our study. First, we focused on how we measured

the popularity of creators and the popularity of recommendations. To measure the popularity of

user i as a creator, denoted as Creator Popularityi, we used the median number of followers each

user had during the week prior to our experiment.10 This metric was chosen because Platform V

primarily assesses creator popularity based on follower counts, and the treatment in our experi-

ment was constructed based on this measure too. Additionally, using the number of followers as

a popularity measure is well-established in prior research (Garcia et al. 2017, Pittman and Abell

2021), providing a reliable basis for comparison. After defining how Creator Popularityi is mea-

sured, Popularity of Recommendationsit, the average creator popularity that user i experienced on

day t, can be defined. Specifically, for each user i on any day t during the experimental period, if

user i watched videos, the median creator popularity across all videos watched by user i on that

day is defined as Popularity of Recommendationsit.
11

Second, for each user i on each day t, we calculated the Video Watch Timeit, which represents

the total time this user spent watching videos during that day. This variable equals zero if the user

did not log into the platform. We also measured the Number of Videos Uploadedit, representing

the count of videos uploaded by the user on that day; this variable also equals zero if no videos

were uploaded. Furthermore, Platform V helped us construct the variable Engagement per Video

Uploadedit, which represents the average views, likes, and shares generated over the next two years

across all videos that user i created on day t.

10 Besides using the number of followers as our primary metric for creator popularity, we explored alternative metrics
based on engagement statistics for robustness checks. We obtained qualitatively and quantitatively similar results
with these alternative metrics. Detailed analyses are available in Online Appendix B.

11 We do not have access to the data for all creators recommended in our sample due to data security. Instead, we
rely on our collaborators at Platform V to construct Popularity of Recommendationsit for each user per day.
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Table 2 Randomization Checks

Treatment Control P-Value of Two-Sample
Users Users Proportion Test or T-Test
(1) (2) (3)

Statistics on the Day
Prior to the
Experiment

Proportion of Females 65.23% 65.29% 0.93
Age 2.29 2.28 0.38

Pre-Experiment Number of Followers 0.05 0.05 0.98
Pre-Experiment Number of Following 0.78 0.78 0.54

Statistics During 7
Days Prior to the
Experiment

Pre-Experiment Average 0.76 0.76 0.94
Number of Uploaded Videos
Pre-Experiment Average 1.33 1.33 0.71

Video Watch Time

Notes: All variables, except Proportion of Females, are standardized to have a unit standard deviation across all users.

To address the potential skewness and volatility in our data—a common challenge in video-

sharing platform analytics (Li et al. 2012)—we requested Platform V to generate winsorized ver-

sions of our metrics (Dixon 1960). Specifically, for each of the raw variables, the winsorized variable

was capped at the 99th percentile value of the user’s corresponding measures recorded in the week

preceding the experiment. These variables, denoted as Winsorized Creator Popularityi, Winsorized

Popularity of Recommendationsit, Winsorized Video Watch Timeit, Winsorized Number of Videos

Uploadedit, and Winsorized Engagement per Video Uploadedit, were used to document our main

estimation results, while raw data were included as a robustness check. Our analyses detailed in

Section 4 confirmed that our main results are qualitatively and quantitatively robust, irrespective

of whether they were based on raw or winsorized data. To protect Platform V’s sensitive infor-

mation, we standardized all continuous variables used in our empirical analyses to have a unit

standard deviation.

3.4. Randomization Checks

Last, after defining our key variables, in order to verify the efficacy of our randomization process,

we compared demographic and behavioral attributes across the treatment and control groups 7

days prior to the experiment. As detailed in Table 2, both groups demonstrated similar character-

istics in terms of the proportion of females and age, as well as basic social network metrics such as

the number of followers (Pre-Experiment Number of Followers) and the number of users they were

following (Pre-Experiment Number of Following) on the day before the experiment. Additionally,

we tracked video-related activities over the 7 days prior to the experiment, including the average

number of videos uploaded per day per user (Pre-Experiment Average Number of Videos Up-

loaded) and the average total video watch time per day per user (Pre-Experiment Average Video

Watch Time). These metrics across both groups show no significant differences, ensuring that any

differences observed post-intervention can be reliably attributed to the intervention itself.
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4. Main Empirical Findings

In this section, we reported the main empirical analyses from our randomized field experiment.

Our main analyses were conducted at the user-day level and employed the ordinary least squares

(OLS) regression using the following specification:

Outcome Variableit = α0 +α1Treatmenti + ϵit (1)

In this regression specification, Treatmenti is a binary variable indicating whether user i was

in the treatment group as opposed to the control group, and Outcome Variableit represents the

daily measurement of user i’s outcome on day t. The specifics of the outcome variables would be

discussed later. Standard errors are clustered at the user level to account for the correlation across

observations within the same user.

4.1. Manipulation Checks

In our experiment, we excluded videos from blocked creators that would have otherwise been

recommended to the treatment group. We want to note that while this treatment could lead to

a decline in the average popularity of creators recommended to the treatment group compared

to the control group, it may not always happen since it is possible that all other creators on

users’ recommended lists could have similar or higher popularity compared to blocked creators.

Therefore, to test whether our treatment indeed affects the popularity of creators recommended to

the treatment group, we conducted a manipulation check by comparing the average popularity of

creators recommended, i.e., Popularity of Recommendationsit, to the treatment group with those

recommended to the control group.

Specifically, using regression specification (1), we tested how the treatment causally impacted

the Popularity of Recommendationsit during the experiment. The results, detailed in Panel A of

Table 3, show a significant reduction in the Popularity of Recommendationsit for the treatment

group—26.80% lower, or 0.0797 standard deviations (p< 0.0001, column (1))—compared to the

control group. Similarly, the Winsorized Popularity of Recommendationsit decreased by 25.64%

or 0.1418 standard deviations (p< 0.0001, column (2)). These findings demonstrate the effective-

ness of the experimental manipulations in altering the popularity of creators recommended to the

treatment users, reflecting a substantial decrease in the exposure to highly popular content among

treated users.

4.2. The Impact of Our Treatment on Content Consumption

After validating the effectiveness of our intervention in decreasing the popularity of recommen-

dations, we proceeded to examine its impact on user behavior, specifically focusing on how rec-

ommending less popular creators influenced the video-watching outcomes of treated users. Our
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Table 3 The Impact of Our Treatment on Users’ Watching Experiences and Outcomes

Panel A: Manipulation Checks—Our Experiment Reduced Creator Popularity Recommended to Treated Users

Outcome Variable Popularity of Recommendationsit Winsorized Popularity of Recommendationsit

(1) (2)

Treatmenti -0.0797∗∗∗∗ -0.1418∗∗∗∗

(0.0023) (0.0023)

Relative Effect Size -26.80% -25.64%
Observations 749,290 749,290

Panel B: Treatment Effect on Video Consumption

Outcome Variable Video Watch Timeit Winsorized Video Watch Timeit

(1) (2)

Treatmenti -0.0134∗∗∗∗ -0.0178∗∗∗∗

(0.0022) (0.0030)

Relative Effect Size -1.38% -1.34%
Observations 800,000 800,000

Notes: Panel A includes user-day observations during the experimental period in which the user watched at least one
video, and panel B includes the whole user-day observations during the experimental period. The outcome variables are
standardized to have a unit standard deviation across all observations in the experiment. Standard errors are clustered at
the user level. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001.

specification follows Equation (1) with outcome variables being Video Watch Timeit and Win-

sorized Video Watch Timeit. As shown in Panel B of Table 3, compared to control users, treatment

users who were recommended creators with lower popularity spent less time watching videos by

1.34%-1.38% (or 0.0134-0.0178 standard deviations, p<0.0001, columns (1) and (2)), depending on

whether we winsorized outcome variables. This demonstrates that recommending videos from less

popular creators significantly decreases the content consumption of end users, which is well-known

in both the literature and the industry.

4.3. The Impact of Our Treatment on Content Production

Shifting our focus from the consumer role to the creator role, we examined the impact of our

treatment on users’ content creation using Equation (1) as the specification and (Winsorized)

Number of Videos Uploadedit as outcome variables. The results, detailed in Panel A of Table

4, demonstrated that our treatment, which lowered the popularity of recommendations, led to a

significant increase in content production. Specifically, the number of videos uploaded by users in

the treatment group increased by 2.39% (or 0.0065 standard deviations, p=0.0035, column (1))

using the raw outcome variable, and by 2.71% (or 0.0091 standard deviations, p=0.0001, column

(2)) when using the winsorized outcome variable.

This interesting result shows that while recommending videos from less popular creators can

significantly decrease content consumption, it can also significantly increase content production.

We interpret the driving force of this result to be two-fold. First, there could be a time trade-off

effect between content production and consumption, where less time spent on content consumption
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Table 4 The Impact of Our Treatment on Users’ Production Outcomes

Panel A: Treatment Effects on Video Production

Outcome Variable Number of Videos Uploadedit Winsorized Number of Videos Uploadedit

(1) (2)

Treatmenti 0.0065∗∗ 0.0091∗∗∗

(0.0022) (0.0022)

Relative Effect Size 2.39% 2.71%
Observations 800,000 800,000

Panel B: Our Treatment Did not Change Engagement Metrics for Uploaded Videos

Outcome Variable Engagement per Video Uploadedit Winsorized Engagement per Video Uploadedit

(Likes) (Comments) (Shares) (Likes) (Comments) (Shares)

(1) (2) (3) (4) (5) (6)

Treatmenti 0.0022 0.0101 0.0061 0.0066 0.0091 0.0080
(0.0058) (0.0058) (0.0057) (0.0058) (0.0058) (0.0058)

Observations 118,097 118,097 118,097 118,097 118,097 118,097

Panel C: Our Treatment Did not Change Users’ Own Creator Popularity

Outcome Variable After-Experiment Number of Followersi Winsorized After-Experiment Number of Followersi

(1) (2)

Treatmenti 0.0003 0.0055
(0.0063) (0.0055)

Observations 100,000 100,000

Notes: Panel A includes all user-day observations during the whole experimental period. Panel B includes user-day observa-
tions in which the user uploaded at least one video. Panel C includes user-level observations across all users. The outcome
variables are standardized to have a unit standard deviation across all observations during the experiment. Standard errors
in Panel B are clustered at the user level. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001.

naturally leads to more time spent on content creation. Second, it is possible that the intrinsic

motivation of users to produce videos increases by seeing videos from less popular creators. These

users may compare their own popularity or video quality with the recommended videos and believe

they also have a decent chance of being recommended to others. Unfortunately, as documented by

Gentzkow (2007), we do not have an endogenous shock that only affects one of these mechanisms,

making it difficult to separately identify these two mechanisms.

Motivated by this interesting result on content production, we first explored whether our in-

tervention affects not only the quantity of content production but also the quality of content

production. Using a similar specification, we tested the impact of our treatment on (Winsorized)

Engagement per Video Uploadedit for users who created videos on day t. The results, presented in

Table 4 Panel B, indicate that our intervention did not significantly affect the long-term engage-

ment levels of videos uploaded by treated users compared to control users. We want to note that

this analysis does not represent a clean causal estimate of the treatment’s impact on created content

quality since users’ participation in creating videos is also affected by the treatment. To provide

more robust evidence, we further calculated After-Experiment Number of Followersi, representing

the number of followers at the end of our experimental period for each user. Panel C of Table 4
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demonstrates that the treatment does not significantly alter users’ own creator popularity between

the treatment and control groups after the experiment. This is consistent with the interpretation

that the treatment does not change the quality of content production.

In summary, our experiment demonstrates that while decreasing the average popularity of rec-

ommended creators negatively impacts the content consumption of users, it could positively impact

the content production of users. Furthermore, it affects only the quantity of content production

rather than the quality.

5. The Structural Model

Our experiment revealed that a reduction in the popularity of recommended creators led to a

significant trade-off between video consumption and production. This finding prompted us to ex-

plore how recommender systems could be designed to maximize platform benefits by considering

its impact on both content consumption and content production. To address this, we developed a

structural model, which is detailed in this section.

5.1. Model Formulation

Drawing on prior research in the domain of time and resource allocation (e.g., Ribar (1995) and

Pellegrini et al. (2021)), our model assumes that users derive utility from leisure activities but are

constrained by a finite amount of time to conduct such leisure activities. These leisure activities

include consuming and creating videos on Platform V, as well as other leisure activities that serve

as the outside option. By strategically allocating their time across various leisure activities within

this time budget, users seek to maximize their own utility.

In our model, each user i makes decisions to maximize her own utility on day t by changing her

choices of xit and yit. xit is a continuous variable representing the time user i spends consuming

videos on day t, while yit is an integer representing the number of videos that user i uploads on

day t. We assume that the time it costs for user i to upload yit videos on day t is denoted by the

cost function c(yit), which takes the following quadratic form:

c(yit) = c1yit + c2y
2
it, (2)

where both marginal costs c1 and c2 will be estimated. Note that we assume the production function

is convex, which is consistent with the past literature (Lazear 2000, Moldovanu and Sela 2008,

Charness et al. 2018), and this particular quadratic function form is also widely used in the past

(e.g., Ederer (2010), Sarafopoulos (2015a,b)). Moreover, we assume that each user i on any day t

will spend K units of time on leisure consumption, and we use oit to denote user i’s time spent on

leisure activities other than content consumption and production on Platform V on day t. In other

words, our model’s time constraint can be represented as

xit + c(yit) + oit =K. (3)
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After introducing the time constraints of our decision variables, let us move on to how these

decisions affect users’ utilities. To model the utility derived from the video consumption decision

xit, following the past literature (Sun et al. 2015, Sarafopoulos 2015a, Huang and Bronnenberg

2018, Kim et al. 2023), we assume that user i’s utility from consuming content for xit amount of

time on day t is a concave function with a logarithmic form:

ψx,it ln(xit + 1) = (ψ̄x,it + δx,it) ln(xit + 1),

where ψx,it = ψ̄x,it + δx,it represents the marginal utility from consuming content and consists of

ψ̄x,it, the base marginal utility of consumption and a random consumption marginal utility error

δx,it. Motivated by our experimental result and past literature (Dobrian et al. 2011, Kim et al. 2012),

we assume the base marginal utility of consumption is a function of popularity of recommended

creators. Specifically,

ψ̄x,it = a0 + a1 log(q̃it), (4)

where a0 and a1 are estimated parameters and q̃it represents Popularity of Recommendationsit.

We will formally define the consumption marginal utility error later along with the production

marginal utility error.

Similarly, following the past literature (Lazear 2000, Goldsmith et al. 2000, Charness and Kuhn

2005), we model the utility derived from creating yit videos for user i on day t as:

ψy,ityit = (ψ̄y,it + δy,it)yit,

where ψy,it = ψ̄y,it+δy,it represents the marginal utility from producing content and consists of ψ̄y,it,

the base marginal utility of production, and a random marginal utility error δy,it for production.

Again, motivated by our experimental results and past literature on social comparison in production

(Huang et al. 2019), we model the base marginal utility of production ψ̄y,it as being influenced by

the ratio of the popularities of recommended creators and the user herself:

ψ̄y,it = b0 + b1
q̃it
qi
, (5)

where b0 and b1 are estimated parameters and qi is Creator Popularityi for user i prior to the

experiment.

Let us now formally define the marginal utility random error for both consumption and pro-

duction δx,it and δy,it. Specifically, we assumed that both error terms can be decomposed into

an individual-specific random effect and an idiosyncratic error shock: δx,it = ϵx,i + ex,it and δy,it =

ϵy,i + ey,it. The individual-specific random effects ϵx,i and ϵy,i were shared across multiple periods

by the same user i. These time-invariant terms indicated consistent individual patterns over time.
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They were assumed to follow a bivariate normal distribution with zero means and a covariance

matrix:

[
1 ρ
ρ 1

]
. The parameter ρ facilitated correlation between the consumption and production

utilities, capturing the interplay between these two dimensions of user behavior. Additionally, the

idiosyncratic error terms ex,it and ey,it, which captured day-to-day variability in video consumption

and production, were assumed to be follow a bivariate normal distribution with zero means and a

covariance matrix for each day t:

[
1 τ
τ 1

]
. Both ρ and τ will be estimated by our model.

Last, we could introduce the users’ utility maximization problem where the overall utility for

user i at day t is a function of xit and yit with a time allocation constraint. To ensure that the

model is identifiable, we normalized the marginal utility of consuming outside leisure activities to

1, and in turn the utility from outside leisure activity for user i at day t is oit. As a result, the

user’s maximization problem can be written as:

max
x≥0,y∈{0,1,··· }

Uit(xit, yit) = max
x≥0,y∈{0,1,··· }

ψx,it ln(xit + 1) +ψy,ityit + oit,

s.t. xit + c(yit) + oit =K.
(6)

Use x∗
it, y

∗
it to denote the optimal solutions. Given that our model involves mixed-integer opti-

mization with both equality and inequality constraints, deriving a closed-form solution is generally

infeasible (Chong and Żak 2013). Without loss of generality, the formulation for the optimal solu-

tion when yit can attain a maximum value of Y is presented as follows:

x∗
it(Θ), y∗it(Θ) = argmax

x≥0,y∈{0,1,··· ,Y }
ψx,it ∗ ln (min{max{ψx,it− 1,0},K − c(y)}+ 1) +ψy,it ∗ y

+K − c(y)−min{max{ψx,it− 1,0},K − c(y)} ,

where Θ = {a0, a1, b0, b1, c1, c2, τ, ρ} represents estimable parameters in our model.

5.2. Model Estimation

The model in Section 5.1 describes the user time allocation problem for one class of users. We further

addressed heterogeneity in user preferences by implementing latent class estimation, which assumes

multiple latent user segments within our dataset. Each segment, indexed by k, is characterized by

a distinct set of estimable model parameters, Θk. The probability that user i belongs to class k

is denoted as Pk, where k ranges from 1 to K. We employed a maximum likelihood approach to

estimate the parameters of our model. The likelihood function for an individual user, assuming

their class is known and fixed, was derived and is detailed in Section 5.2.1. The algorithms used

for latent class estimation are further elaborated in Section 5.2.2.
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5.2.1. The Likelihood Function. In this section, we derived the likelihood function for

observing the decisions of user i across periods conditional on them belonging to segment k. For

clarity, we omitted the notation indicating conditioning on segment k in the following mathematical

expressions.

Given that users maximize their utility, the observed consumption and production decisions of

user i represent the optimal solutions. The probability of observing a specific vector of decisions

for user i over all time periods t= 1,2, . . . , T , denoted as [x∗
i1, x

∗
i2, . . . , x

∗
iT , y

∗
i1, y

∗
i2, . . . , y

∗
iT ]′, is char-

acterized by the joint probability of these components of optimal consumption and production

decisions:

• Consumption decisions: Conditional on any given value of production decision yit, the user

chose to consume a continuous variable xit to obtain the highest utility Uit, and thus the

optimal decision, x∗
it, will fall into two possible solutions: (1) an interior solution (x∗

it > 0)

satisfying the first-order condition: ∂Uit
∂xit

=
ψx,it

xit+1
− 1 such that x∗

it = ψx,it − 1; (2) a corner

solution (x∗
it = 0) when ψx,it ≤ 1. Altogether, we have

δx,it = x∗
it + 1− ψ̄x,it if x∗

it > 0,

δx,it ≤ 1− ψ̄x,it if x∗
it = 0. (7)

• Production decisions: The user chose a discrete value of yit as the number of videos to create

to maximize utility.

Uit(x
∗
it, y

∗
it)≥Uit(x

∗
it, y

∗
it + 1) for y∗it ≥ 0 and Uit(x

∗
it, y

∗
it)≥Uit(x

∗
it, y

∗
it− 1) for y∗it ≥ 1.

This condition is equivalent to

c1 + c2(2yit− 1)− ψ̄y,it ≤ δy,it ≤ c1 + c2(2yit + 1)− ψ̄y,it if y∗it = 1,2, · · · ,

δy,it ≤ c1 + c2 − ψ̄y,it if y∗it = 0. (8)

Let Li(Θk) represent the likelihood of all decisions made by user i across periods when user i

belonged to class k, which is the joint probability such that conditions defined in Equations (7)

and (8) are satisfied over all time periods t= 1,2, . . . , T :

Li(Θk) =

∫ {
δx,it = x∗

it + 1− ψ̄x,it, if x∗
it > 0

δx,it ≤ 1− ψ̄x,it, if x∗
it = 0

for t= 1,2, . . . , T,


c1 + c2(2yit− 1)− ψ̄y,it ≤ δy,it ≤ c1 + c2(2yit + 1)− ψ̄y,it if y∗it > 0

δy,it ≤ c1 + c2 − ψ̄y,it if y∗it = 0

for t= 1,2, . . . , T

}

dF (δx,i1, δy,i1, . . . , δx,iT , δy,iT ). (9)
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Computing Li(Θk) from the joint distribution of a 2× T -dimensional vector of correlated error

terms presented a significant computational challenge. To effectively manage this complexity, we

took advantage of the GHK simulation method for likelihood calculations (Geweke et al. 1994,

Hajivassiliou and Ruud 1994, Keane 1994, Jiang et al. 2021). This simulation technique is highly re-

garded for its ability to handle truncated multivariate variables with correlations, as demonstrated

in its application to multinomial probit models (Geweke et al. 1994). In such models, error terms

are bound by a series of inequality constraints driven by the observed choices. By utilizing the

GHK method, we drew error terms from truncated distributions rather than their original forms,

incorporating the use of importance sampling weights to enhance the accuracy and efficiency of

our estimates. We provided a detailed sampling procedure in the Online Appendix C. We used this

method to simulate the likelihood Li for each user i across all periods.

In addition, recommender systems are tailored to match video selections with individual user

tastes and preferences, potentially introducing an endogeneity issue. The relationships observed

between user outcomes and the popularity of recommendations might not accurately depict causal

effects. This is why we conducted a randomized field experiment to implement an exogenous shock

to recommended creators when we analyzed empirical findings. To address endogeneity in this

nonlinear structural model, we employed the widely-used control function method (Agarwal 2015,

Wooldridge 2015). This method functions as an instrumental variable approach but is particularly

adept at managing complex models that are nonlinear in endogenous variables. Specifically, we

regressed log(q̃it) on Treatmentit to obtain the residual, denoted by rx,it. We then included rx,it as

a control in predicting ψx,it. Similarly, for we regressed q̃it/qi on Treatmentit to obtain the residual,

denoted by ry,it. We incorporated ry,it as a control in predicting ψy,it.

5.2.2. Likelihood Maximization and Latent Class Estimation. After deriving the like-

lihood of all decisions made by user i across periods when user i belongs to class k, given Pk as

the probability of users in type k, where k= 1,2, . . . ,K, the log-likelihood function for all users is

represented as:

L=
∑
i

log

(∑
k

PkLi(Θk)

)
(10)

To estimate the parameters Θ1,Θ2, . . . ,ΘK in our latent class model, we employed the

Expectation-Maximization (EM) algorithm (Moon 1996). The EM algorithm is a robust statistical

technique designed to find maximum likelihood estimates in probabilistic models that include un-

observed latent variables. It alternates between two main steps: the Expectation (E) step and the

Maximization (M) step, iteratively repeated until convergence criteria were met. In the E step, we

updated the conditional distribution of the latent variables (Pk) while fixing the current estimates

of the parameters (Θk). The M step then updated the parameters (Θk) to maximize the expected
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Table 5 Data Sources for Model Estimation

Notation in the Model Data from the Experiment

xit Winsorized Video Watch Timeit
yit Winsorized Number of Videos Uploadedit

qi Winsorized Creator Popularityi (+1)
q̃it Winsorized Popularity of Recommendationsit (+1)

Notes: Regarding q̃it, we imputed missing values based on the average popularity of recommendations from previous days
when the user was active during the experimental period. The (+1) adjustment is applied to Winsorized Creator Popularityi

andWinsorized Popularity of Recommendationsit to avoid undefined calculations in logarithmic functions and denominators.

log-likelihood, fixing the latent variables (Pk) as found in the E step. These steps are detailed in

Online Appendix D.

5.3. Model Identification

The data used to estimate the model are detailed in Table 5. The definition of variables used for

our structural estimation is very similar to those discussed in Section 3.3 with some minor changes.

Specifically, Winsorized Video Watch Timeit and Winsorized Number of Videos Uploadedit were

used as direct inputs for xit and yit, respectively. Both measures were recorded daily throughout

the experimental period for each user, with values set to zero on days when users did not log onto

Platform V. We utilized Winsorized Creator Popularityi, the median number of followers for user i

over the week before the experiment, as the input for qi. For Popularity of Recommendationsit, we

included observations at the user-day level throughout the experiment. On days when a user did not

log in, missing observations were imputed using the average value from previous days’ observations

during the experimental period. In this balanced dataset prepared for structural estimation, 0.02%

of Winsorized Popularity of Recommendationsit and 0.17% of Winsorized Creator Popularityi

entries are zeros. Since these variables are used in logarithmic functions and as denominators, where

zero values would lead to undefined results, we incremented each by one to facilitate calculations

of q̃it and qi. Given that the magnitude of the maximum q̃it value reaches 106, the scaling factors

for coefficients a1 and b1 were adjusted to 10 and 106, respectively, to enhance sensitivity during

the parameter optimization process.

Last, we want to briefly discuss how each of the model parameters is identified from various

moments in our data source. First, parameters a0 and a1, as defined in Equation (4), are identified

by the exogenous variations in the popularity of recommendations introduced by our treatment

and users’ decisions regarding video consumption. Second, b0 and b1 defined in Equation (5) as well

as c1 and c2 defined in Equation (2) are identified by users’ choices in content production under

various levels of recommended creators’ popularities and the users’ own popularity. We want to

note that b0 and c1 are perfectly colinear in our model and cannot be identified simultaneously, so

we normalize b0 to 0. Last, the error correlation parameters ρ is identified through the correlation
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Table 6 Estimation Results of the Structural Model

Segment 1 Segment 2 Segment 3 Segment 4

(1)
Marginal Utility of
Consumption

a0 1.59 1.45 1.47 0.95
(0.0008) (0.0008) (0.0006) (0.0004)

(2) a1 0.55 0.64 0.61 3.28
(0.0009) (0.0009) (0.0007) (0.0004)

(3) Marginal Utility of Creation b1 -70.04 -3.85 -2.83 -12.52
(0.0001) (0.0001) (0.0003) (<0.0001)

(6)

Creation Time Cost

c1 0.73 1.32 0.91 0.85
(<0.0001) (<0.0001) (<0.0001) (<0.0001)

(7) c2 0.61 0.18 0.32 0.33
(<0.0001) (0.0001) (<0.0001) (<0.0001)

(4)
Correlation Between Two
Utilities

ρ 0.33 0.34 0.43 0.27
(<0.0001) (<0.0001) (<0.0001) (<0.0001)

(5) τ 0.21 0.22 0.21 0.17
(<0.0001) (<0.0001) (<0.0001) (<0.0001)

(8)
Segment Probability

33.41% 31.43% 26.86% 8.30%
(<0.0001) (0.0003) (0.0003) (<0.0001)

Observations 800,000

Standard errors are presented in parentheses.

between production and consumption decisions for each individual user across time while the

error correlation parameter τ is identified through the overall correlation between production and

consumption across each user at each day.

6. Estimation Results and Counterfactuals
6.1. Estimation Results

We employed the L-BFGS-G method12 to estimate our model. To robustly estimate standard errors,

we used bootstrapping techniques, randomly sampling with replacement at the user level 100 times

and re-estimating the model for each sample. We utilized the Bayesian Information Criterion (BIC)

to determine the optimal number of latent classes. After incrementally increasing the number of

latent classes from one to five, we observed the lowest BIC with four classes13, suggesting the best

model fit at this level.

Table 6 presents estimates from our structural model, identifying four distinct user segments

with varying preferences. These segments represent 33.41%, 31.43%, 26.86%, and 8.30% of the

total users in our sample, respectively (see row (8)). We denote these four segments as Segments

1, 2, 3, and 4.

The parameter a0 denotes the baseline marginal utility of consuming videos, irrespective of the

popularity of recommendations provided to users. The values of a0 are 1.59, 1.45, 1.47, and 0.95

12 For details on the L-BFGS-G optimization method, see: https://docs.scipy.org/doc/scipy/reference/optimize.minimize-
lbfgsb.html

13 The BIC values for models with one to five classes were: 3004481.35, 2990920.13, 2983414.04, 2982237.32, and
2982323.47, respectively.
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for the four segments, as shown in row (1). When the popularity of recommendations is set to

zero, the utility for consuming xit hours of videos for each segment is (1.59 + δx,it) ln(xit + 1),

(1.45 + δx,it) ln(xit+ 1), (1.47 + δx,it) ln(xit+ 1), and (0.95 + δx,it) ln(xit+ 1), respectively. The value

of a0 qualitatively indicates users’ consumption choices when the popularity of recommendations is

zero. Accordingly, the consumption choices under zero popularity of recommendations in Segment

4 are the lowest, followed by Segment 2, Segment 3, and Segment 1, consistent with the sequence

of a0 values.

The parameter a1 measures the rate of change in the marginal utility of consuming videos in

response to changes in the logarithm of the median popularity of recommended creators log(q̃it).

The parameter a1 across all segments has statistically significant positive values of 0.55, 0.64, 0.61,

and 3.28, respectively (row (2)). These positive a1 values indicate that as q̃it increases, the marginal

utility of consuming videos among all four segments increases. For instance, a 1% increase in q̃it

corresponds to a log(1.01) increase in log(q̃it). This change, inversely scaled by the factor of 10

that was used to ensure the sensitivity of a1 in the estimation process, results in an increase of

a1 × log(1.01)× 10−1 in the marginal utility of consumption. It is worth noting that Segments 1-3

have similar values of a1, while Segment 4 has the highest value of a1, more than five times that

of Segments 1-3, indicating a much higher sensitivity to the popularity of recommendations in

consumption for Segment 4.

The parameter b1 measures the rate of change in the marginal utility of creating videos in

response to changes in the median popularity of recommended creators q̃it. The parameter b1 shows

a statistically significant negative impact of q̃it on video production, with values of -70.04, -3.85,

-2.83, and -12.52, as noted in row (3). This indicates that an increase in q̃it reduces the utility

derived from creating videos. For example, if q̃it increases by one thousand, inversely scaled by

the factor of 106 that was used to ensure the sensitivity of b1 in the estimation process, yielding

b1 × 10−3 in the marginal utility of production, respectively. It is worth noting that Segments 2-3

have similar values of b1, being the lowest in absolute value, Segment 4 has a medium absolute value

of b1, roughly 4 times that of Segments 2-3. Segment 1 has the largest absolute value of b1, roughly

5 times that of Segment 4. These indicate a high sensitivity to the popularity of recommendations

in production for Segment 1 and a medium sensitivity for Segment 4, while Segments 2-3 have low

sensitivity.

The parameters c1 and c2, outlined in rows (4) and (5) of the table, dictate the time costs for

video production. Here, c1 serves as the linear coefficient and c2 as the quadratic term. The time

required to create one video varies across the segments, averaging 1.14, 1.50, 1.23, and 1.18 hours

for segments 1 through 4, respectively (c1 + c2). Similarly, the time needed to produce two videos
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Table 7 Simulated Average Treatment Effects on Video Consumption and Production

Panel A: Effects on Video Consumption

Outcome Variable Simulated Video Watch Time Simulated Number of Videos Uploaded

(1) (2)

Treatment -0.0486∗∗∗∗ 0.0691∗∗∗∗

(0.0022) (0.0022)

Relative Effect Size -1.89% 3.54%
Observations 800,000 800,000

We simulated each user’s decision on video watching time and number of videos uploaded each day in the experimental
period. All outcome variables are standardized to have unit deviation before entering the regressions. Standard errors are
clustered at the user level. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001.

is 3.17, 2.20, 2.19, and 2.17 hours for each respective segment (c1 + c2×4). The time for producing

other numbers of videos can be calculated using the same logic.

The parameters ρ and τ , representing the correlations in random error terms, are statistically

significant and positive across all segments with slight variations, as shown in rows (6) and (7). The

parameter ρ depicts the time-invariant correlation between consumption and production utility for

an individual. A positive ρ indicates that users who derive high utility from consumption (produc-

tion) also consistently and stably derive high utility from production (consumption), suggesting an

inherent attitude toward spending time on the platform, either consuming or creating. The param-

eter τ depicts the within-same-period correlation between consumption and production. A positive

τ means that on a specific day, when a user derives high utility from production (consumption),

they also derive high utility from consumption (production) on that day, which may suggest that

the user has sufficient time to spend on the platform on that day.

In summary, all the parameter estimates across the four segments are significant and consistently

signed, aligning with their interpretations. Except for the parameters for error correlation terms,

which are quite similar across all four segments, the other parameters differentiate each segment.

The parameters a1 and b1 are particularly important since they represent the sensitivity to changes

in the median popularity of recommended creators, which was the focus of our experimental manip-

ulation. From the aforementioned analyses, we note a much higher sensitivity to the popularity of

recommendations in consumption for Segment 4 compared to Segments 1-3. Additionally, there is

a high sensitivity to the popularity of recommendations in production for Segment 1 and a medium

sensitivity for Segment 4, while Segments 2-3 exhibit low sensitivity.

6.2. Model Validation

The core purpose of our structural model is to understand the trade-off between content produc-

tion and content consumption when recommending creators with different popularity levels. An

important way to validate our model is to compare the simulated treatment effects of decreasing

the median popularity of recommended creators with the observations from our experiments in
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Section 4. Therefore, we recalculated the main treatment effects based on our structural model.

As indicated in Table 7, our simulation shows that Video Watch Time decreased by 1.98% and

the Number of Videos Uploaded increased by 3.54%, highlighting the existence of such trade-offs.

These simulated effects closely align with the empirical observations—1.34% decrease in Video

Watch Time and 2.71% increase in the Number of Videos Uploaded (as detailed in Sections 4.2

and 4.3)—thereby suggesting the validity of our model.

6.3. Counterfactuals

Our field experiment confirmed that recommending highly popular creators led to a trade-off be-

tween content consumption and production (see Section 4), and our model also recovered this

trade-off (see Section 6.2). Given the importance of both activities for online content-sharing plat-

forms, this raises a crucial question: How should platforms design their recommender systems to

optimize the overall value derived from both consumption and production? To address this, we

conducted several counterfactual analyses based on our model, providing strategic insights into

enhancing recommender systems to maximize this overall value.

After incorporating our empirical findings and discussing with the managers of Platform V, we

modeled Platform V’s overall value as follows:

V (q̃it) =
N∑
i=1

x∗
it(q̃it) +wi

N∑
i=1

y∗it(q̃it). (11)

Here, q̃it, defined in Section 5.1, represents the median popularity of the recommended creators

shown to user i on day t, as a result of Platform V strategically adjusting their recommender

system. The terms x∗
it and y∗it denote functions that yield the optimal video watching time of

user i on day t and the number of videos uploaded by user i on day t, respectively, based on the

optimization model outlined in Equation (6), given the input of q̃it. Let wi denote the relative value

of one unit of content production from user i to one unit of consumption of user i.

Online content-sharing platforms can employ various strategies to assess the value of content

production compared to consumption. One simple and straightforward approach used by Platform

V is the constant production value, referred to as the “Fixed Production Value”: for each user i,

wi equals a fixed constant w0.
14

Platforms can also determine production value based on a creator’s popularity, assigning more

weight to more influential creators. In Online Appendix E, we provided an example of a piecewise

linear method that segmented creators into quartiles based on their popularity—from the least

popular (0-25%) to the most popular (75-100%). The weights w1,w2,w3, and w4 were assigned in

14 We are not allowed to reveal the specific value of w0 for Platform V.
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ascending order (w1 ≤w2 ≤w3 ≤w4), reflecting the tiered influence of creators. The insights from

this method are similar to the case of the “Fixed Production Value.”

Next, we discussed three distinct recommendation strategies and summarized the counterfactual

results from these strategies in Table 11. Detailed explanations can be found in Sections 6.3.1–6.3.3.

Table 8 Counterfactual Analyses

Recommendation Recommended Creator Popularity Percentile Overall
Strategy Segment 1 Segment 2 Segment 3 Segment 4 Value

(1) (2) (3) (4) (5)

(1) Consumption-Only 99th Percentile 1.00
Uniform

(2) Balanced Uniform 94th Percentile 1.05
(3) Balanced 71st Percentile 98th Percentile 98th Percentile 99th Percentile 1.07

Segment-Targeted

Notes: The range of q̃ was set from the 1st to the 99th percentile of creator popularity in video supply. The overall value in
the Consumption-Only and Uniform Recommendation Strategy is used as the baseline, with relative overall values of other
strategies compared to it.

6.3.1. Consumption-Only Uniform Recommendation Strategy. Prevailing research

and practices from prominent online content-sharing platforms such as YouTube and TikTok his-

torically have focused their recommender systems on enhancing content consumption, as detailed

in Sections 1 and 2. Insights from industry experience suggested that this focus did not necessarily

stem from undervaluing content production but rather from organizational structures that com-

partmentalized production and consumption into separate departments. As a result, those tasked

with boosting consumption, despite acknowledging the importance of production, prioritized con-

sumption to meet their specific departmental objectives. In our overall value function framework,

this emphasis on consumption led to the assignment of a zero value to wi for all users.

We considered applying a uniform median popularity of recommendations, denoted as q̃, to each

user. We assumed the feasible limits of recommendation adjustments as the 1st and 99th percentile

of creator popularity across all videos in supply, which defined the range of varying q̃. The optimal

solution, q̃∗, which maximized overall value, was defined mathematically as:

q̃∗ = argmax
q̃

∑
i

x∗
it(q̃). (12)

This approach was termed the “Consumption-Only Uniform Recommendation Strategy.”

Since consumption utility is monotonically positive to the popularity of recommendations, as

suggested by the positive values of a1 in our model, the outcome of this strategy would yield the

optimal solution being the maximum of q̃ within the manipulation range, i.e., the 99th percentile

of the creator popularity in video supply, which was also confirmed by our simulation based on the

model. That aligned with the common recommendation approach discussed in Section 1, which
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Figure 3 Illustration of Deriving q̃∗ Under Balanced Uniform Recommendation Strategy

favored the promotion of highly popular content. Additionally, our data analysis on Platform V

revealed that the median popularity level of recommendations matched the 99th percentile of

creator popularity in the overall video supply, suggesting that the current recommendation strategy

predominantly selected content that had already achieved high popularity (see details in Online

Appendix A).

6.3.2. Balanced Uniform Recommendation Strategy. Next, we uniformly applied a sin-

gle median popularity level, q̃, to all users while recognizing the value of both content production

and consumption. We determined the optimal q̃∗ that maximized the overall value of the platform,

accounting for production:

q̃∗ = argmax
q̃

(
N∑
i=1

x∗
it(q̃) +wi

N∑
i=1

y∗it(q̃)

)
, (13)

This approach was termed the “Balanced and Uniform Recommendation Strategy.”

When we applied the fixed production value across all user segments, unlike the Consumption-

Only Uniform Recommendation Strategy, which identified the 99th percentile as optimal, the

Balanced Uniform Recommendation Strategy did not always seek the highest levels of popularity.

Simulation results showed that the optimal median popularity of recommendations, q̃∗, was at the

94th percentile, as shown in Figure 3. This suggests that this strategy recommends the less popular

94% of creators with higher frequency and more popular creators with lower frequency compared

to the Consumption-Only Uniform Recommendation Strategy.

These strategic adjustments directly influenced the platform’s overall value. Balanced Uniform

Recommendation Strategy achieved a 5% increase in overall value compared to the baseline set by

the Consumption-Only Uniform Recommendation Strategy.
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6.3.3. Balanced Segment-Targeted Recommendation Strategy. Moreover, beyond in-

cluding the value from creation, we adopted a more segmented approach, wherein the platform

customized the popularity of recommended videos, q̃k, for each user segment k. This approach was

captured in the following mathematical model:

q̃∗k = argmax
q̃k

(∑
i∈k

x∗
it(q̃k) +wi

∑
i∈k

y∗it(q̃k)

)
,∀k= 1,2, · · · ,K, (14)

which determined the optimal recommendation level, q̃∗k, for each segment, thus customizing the

platform’s recommendation strategy. We referred to this method as the “Balanced and Segment-

Targeted Recommendation Strategy.”

When we applied the fixed production value across all user segments, this strategy resulted in

varying optimal recommendation levels: (1) Segment 1, particularly sensitive to the popularity of

recommendations on production, had an optimal recommendation at the 71st percentile, recom-

mending the less popular 71% of creators with higher frequency and more popular creators with

lower frequency; (2) Segments 2 and 3, with lower sensitivity to the popularity of recommenda-

tions on both consumption and production, reaches the optimal at the 98th percentile, slightly

including more less popular creators; (3) Segment 4, highly the popularity of recommendations on

consumption, maintained the highest recommendation level at the 99th percentile.

Regarding the overall value increase, the Balanced Segment-Targeted Recommendation Strategy

demonstrated significant improvements over the Balanced Uniform Recommendation Strategy. The

overall value increased by 7%, relative to the baseline set by the Consumption-Only Uniform

Recommendation Strategy. These results underscored the effectiveness of a segmented approach

in enhancing platform performance by tailoring recommendations to meet the diverse needs and

sensitivities of different user groups.

7. Conclusion and Discussion

This study investigated the dual roles of users on online content-sharing platforms, where they serve

both as consumers and creators. Recommender systems, crucial to these platforms, theoretically

influence user behavior in both consuming and producing content. Our field experiment causally

examined how these systems impact not only what users consume but also their motivation to

create. The results revealed that treatment users, who were recommended creators with lower pop-

ularity, decreased their content consumption but increased their content production. This suggests

that while less popular content may attract fewer views, it may encourage users to contribute their

own content.

To further examine these dynamics, we developed a structural model informed by our exper-

iment’s results. Utilizing this model, we conducted counterfactual analyses to explore optimal
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recommendation strategies that balance the effects on content consumption and production. Coun-

terfactual analyses based on our structural estimation revealed that the optimal strategy often

involved recommending less popular content to enhance production, challenging current industry

practices. Thus, a balanced approach in designing recommender systems is essential to simultane-

ously foster content consumption and production.

Our research offered several practical implications for platform management. First, adjusting

recommender systems impacted both consumption and production, which are critical for the plat-

form’s long-term health. Contrary to the intuitive strategy of promoting highly popular videos to

maximize viewer engagement, our analysis indicated that this approach might not always be the

best strategy.

Second, customizing the popularity of creators in recommendations according to distinct user

segments could add substantial value. For instance, users in segment 4 might benefit from recom-

mendations featuring more popular creators. In contrast, users in segment 1 might engage more

with recommendations featuring less popular creators. This tailored approach helps the platform

enhance overall value by adapting recommendation strategies to the diverse preferences of its user

base.

However, our study was not without limitations. One significant constraint was the biased sam-

ple; the users in our experiment were active in both consuming and producing content. Most

platform users are less active, particularly in content production, and would likely benefit from

recommendations featuring the most popular videos. Additionally, our analysis did not account for

long-term equilibrium effects. Changes in recommender systems can alter creator popularity over

time. For example, a uniform strategy that boosts lesser-known creators may change the content

landscape significantly over time. Since the predominant strategy for engaging less active users

involves recommending popular videos, the long-term impact on overall platform dynamics may

not be substantial. These areas provide fertile ground for further research to better understand the

broader implications of recommender systems on user engagement and content production.
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Online Appendices
A. Evidence of Current Recommendation Strategy

We generated a quantile-quantile (Q-Q) plot, Figure 4, to compare the distributions of video

popularity in recommendations during our experiment and the overall video supply on Platform

V. The popularity from recommendations is displayed along the x-axis, whereas the overall video

supply’s popularity is mapped to the y-axis. Each coordinate (x, y) on the plot corresponds to a

quantile from the recommendation distribution aligned against the same quantile from the video

supply distribution. Analysis of this plot reveals that the median (50th percentile) of content

popularity in recommendations equates to the 99th percentile of content popularity in production.

This figure also indicates that the recommendation algorithms tend to select content that is highly

popular.

Figure 4 Q-Q Comparison of Popularity in Recommendations Versus Video Supply on Platform V

B. Analyses Based on Alternative Metrics for Measuring Creator
Popularity

As discussed in Section 3.3, beyond the primary Creator Popularity metric based on the number of

followers a user has, we also examined Creator Popularity by analyzing engagement metrics—views,

likes, and shares—of videos they uploaded during the seven days leading up to each day, counting

only days when at least one video was uploaded. Most engagement on short-video platforms accu-

mulates within the first week of posting. Platform V provided cumulative user engagement data

for these videos from their upload date until the end of 2023. All videos included in our study

were uploaded before or during January 2020, providing us with a monitoring period of over two
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years. This long-term tracking allowed for a thorough assessment of their enduring popularity. We

calculated the median values of views, likes, and shares per video to obtain a robust measure of

popularity, which we also used to calculate the Popularity of Recommendationsit. Both our primary

and alternative popularity metrics are highly positively correlated.

We explored the correlation between the Popularity of Recommendationsit metric based on the

number of followers and the Popularity of Recommended Videosit metric based on median likes,

comments, and shares per video. The correlations were 0.71, 0.75, and 0.68 (p-values<0.0001),

respectively.

Additionally, we presented regression results to predict the Popularity of Recommended Videosit

based on median likes, comments, and shares per video as shown in Table 9. The regression results

confirm that our treatment significantly reduced the Popularity of Recommendationsit, as indi-

cated by the negative coefficients across all measures—likes, comments, and shares. Statistically

significant reductions were observed for likes and shares (p<0.0001), with relative effect sizes of

-30.41% for likes, -22.26% for comments, and -27.61% for shares using raw data. For winsorized

data, the effect sizes were -26.66% for likes, -20.32% for comments, and -24.21% for shares. These

effect sizes indicate substantial decreases in the Popularity of Recommendationsit, aligning with

our treatment’s intended effect of reducing exposure to high-popularity content among treated

users.

Table 9 Manipulation Check for Our Treatment Using Alternative Popularity Metric

Outcome Variable Popularity of Recommendationsit Winsorized Popularity of Recommendationsit
Based on Based on

Likes Comments Shares Likes Comments Shares

(1) (2) (3) (4) (5) (6)

Treatment -0.0471∗∗∗∗ -0.0448∗∗∗∗ -0.0504∗∗∗∗ -0.0977∗∗∗∗ -0.1093∗∗∗∗ -0.1140∗∗∗∗

(0.0023) (0.0023) (0.0023) (0.0023) (0.0023) (0.0023)

Relative Effect Size -30.41% -22.26% -27.61% -26.66% -20.32% -24.21%
Observations 749,290 749,290 749,290 749,290 749,290 749,290

This table includes user-day observations in which the user watched at least one video. The outcome variables are stan-
dardized to have a unit standard deviation across all observations during the experiment. Standard errors are clustered at
the user level. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001.

C. GHK Sampling Procedure

Denote the variance-covariance matrix of [δx,i1, δx,i2, · · · , δy,i1, δy,i2, · · · ]′ as Σ. This vector of random

error follows follow a multivariate normal distribution with a mean vector of zero and a covariance

matrix Σ as follows:
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Denote the probability density function (PDF) and cumulative distribution function (CDF) of

a standard normal random variable as ϕ and Φ, respectively. Our detailed sampling and likelihood

calculation process is as follows:

1. Sample for the production behavior in the first period.

(a) If xi1 = 0, draw ux,i1 from the truncated area with an upper bound of
1−(a0+a1 log(q̃i1)+a2rx,i1)

Σ
1/2
1,1

(b) If xi1 > 0, calculate ux,i1 as
xi1+1−(a0+a1 log(q̃i1)+a2rx,i1)

Σ
1/2
1,1

2. Recursively draw ux,i2, ux,i3, · · · , ux,iT
(a) If xit = 0, draw ux,it from the truncated area with

1−(a0+a1 log(q̃it)+a2rx,it)−
∑t−1

j=1 Σ
1/2
t,j ux,ij

Σ
1/2
t,t

(b) If xit > 0, calculate ux,it as
1−(a0+a1 log(q̃it)+a2rx,it)−

∑t−1
j=1 Σ

1/2
t,j ux,ij

Σ
1/2
t,t

3. Sample for the consumption behavior in the first period

(a) If yi1 = 0, draw uy,i1 from the truncated area with an upper bound of
c1+c2−b1

(
q̃i1
qi

)
−b2ry,i1−

∑T
j=1 Σ

1/2
T+1,j

ux,ij

Σ
1/2
T+1,T+1

(b) If yi1 = y, draw uy,i1 from the truncated area with a lower bound of
c1+c2(2y−1)−b1

(
q̃i1
qi

)
−b2ry,i1

Σ
1/2
T+1,T+1

and an upper bound of
c1+c2(2y+1)−b1

(
q̃i1
qi

)
−b2ry,i1−

∑T
j=1 Σ

1/2
T+1,j

ux,ij

Σ
1/2
T+1,T+1

4. Recursively draw uy,i2, uy,i3, · · · , uy,iT
(a) If yit = 0, draw uy,it from the truncated area with an upper bound of

c1+c2−b1
(

q̃it
qi

)
−b2ry,it−

∑T
j=1 Σ

1/2
T+1,j

ux,ij−
∑t−1

j=1 Σ
1/2
T+t,T+j

uy,ij

Σ
1/2
T+t,T+t

(b) If yit = y, draw uy,it from the truncated area with a lower bound of
c1+c2(2y−1)−b1

(
q̃it
qi

)
−b2ry,it−

∑T
j=1 Σ

1/2
T+1,j

ux,ij−
∑t−1

j=1 Σ
1/2
T+t,T+j

uy,ij

Σ
1/2
T+t,T+t

and an upper bound of

c1+c2(2y+1)−b1
(

q̃it
qi

)
−b2ry,it−

∑T
j=1 Σ

1/2
T+1,j

ux,ij−
∑t−1

j=1 Σ
1/2
T+t,T+j

uy,ij

Σ
1/2
T+t,T+t

D. Procedure of EM Algorithm for Latent Class Estimation

In this section, we detailed our algorithm for latent class estimation.
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Initialization Step
- Initialize Pk Set initial probabilities for each class k= 1,2, . . . ,K
- Initialize Θk Set initial parameter estimates for each class
Iterative Steps
E Step Update Pk using current Θ values:

Pk = 1
N

∑N

i=1

(
Li(Θk)∑
j Li(Θj)

)
M Step Update Θk by optimizing:

Θk = arg maxΘk

∑
i log

(∑
j PjLi(Θj)

)
Table 10 EM Algorithm for Latent Class Estimation

E. Alternative Example of Counterfactual Analyses

We provided another approach that adjusted the production value based on a creator’s popular-

ity, assigning more weight to more influential creators. Specifically, Platform V also employed a

piecewise linear method that segmented creators into quartiles based on their popularity—from

the least popular (0-25%) to the most popular (75-100%). The weights w1,w2,w3, and w4 were

assigned in ascending order (w1 ≤ w2 ≤ w3 ≤ w4), reflecting the tiered influence of creators. This

strategy is referred to as the “Piecewise Linear Production Value” and is mathematically defined

as follows:

wi =


w1 if qi was in the first quartile of creator popularity,

w2 if qi was in the second quartile of creator popularity,

w3 if qi was in the third quartile of creator popularity,

w4 if qi was in the fourth quartile of creator popularity.

∀ user i.

Table 11 Counterfactual Results with Piecewise Linear Production Value

Recommendation Recommended Creator Popularity Percentile Overall
Strategy Segment 1 Segment 2 Segment 3 Segment 4 Value

(1) (2) (3) (4) (5)

(1) Consumption-Only Uniform 99th Percentile 1.00
(2) Balanced Uniform 96th Percentile 1.02
(3) Balanced Segment-Targeted 81st Percentile 98th Percentile 98th Percentile 99th Percentile 1.09

Notes: The range of q̃ was set from the 1st to the 99th percentile of creator popularity in video supply. The overall value
in the consumption-focused recommendation strategy is used as the baseline, with relative overall values of other strategies
compared to it.

For Balanced Uniform Recommendation Strategy, the optimal q̃∗ adjusted slightly to the 96th

percentile, maintaining a focus on a diverse range of creators, though slightly skewed towards more

popular content. With a piecewise linear production value, the increase was at 2%.

For Balanced Segment-Targeted Recommendation Strategy, the recommendation levels adjusted

slightly, with only Segment 1 experiencing a change in its optimal recommendation level to the

81st percentile. The overall value saw an even more significant improvement, increasing by 9%.
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In summary, the results and insights in this Piecewise Linear Production Value case are similar

to the Fixed Production Value reported in Section 6.3.
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